Top Menu

NASA logo
TAP

Archive | Active Missions RSS

Pathfinder Satellite Paves Way for Constellation of Tropical-storm Observers

The 2020 Atlantic hurricane season was one of the most brutal on record, producing an unprecedented 30 named storms. What’s more, a record-tying 10 of those storms were characterized as rapidly intensifying — some throttling up by 100 miles per hour in under two days.

To bring more data to forecasters and have a more consistent watch over Earth’s tropical belt where these storms form, NASA has launched a test satellite, or pathfinder, ahead of a constellation of six weather satellites called TROPICS (Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats). Planned for launch in 2022, the TROPICS satellites will work together to provide near-hourly microwave observations of a storm’s precipitation, temperature, and humidity – a revisit time for these measurements not currently possible with other satellites.

“As a lifelong Floridian, I’ve seen firsthand the devastating impact that hurricanes can have on our communities. And as climate change is making hurricanes even stronger, it’s more important than ever that NASA and our partners invest in missions like TROPICS to better track and understand extreme weather,” said NASA Administrator Bill Nelson. “NASA’s innovation is strengthening data models that help scientists improve storm forecasting and understand the factors that feed these monster storms. TROPICS will help to do just that and we look forward to next year’s launch of the TROPICS satellite constellation.”

When launched, the TROPICS satellites will work together to provide near-hourly microwave observations of a storm’s precipitation, temperature, and humidity. The mission is expected to help scientists understand the factors driving tropical cyclone intensification and to improve forecasting models.Credits: NASA

“TROPICS is the beginning of a new era. This mission will be among the first to use a constellation of small satellites for these types of global, rapid-revisit views of tropical storms,” said Scott Braun, the TROPICS project scientist and a research meteorologist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Since tropical cyclones and hurricanes can change rapidly as they travel across the ocean, the increased observations from the TROPICS satellites will not only advance the science of understanding storm intensity, they also may improve intensity forecasts.

“The project holds great promise to boost NOAA’s steady improvements in weather and hurricane forecasts by feeding new environmental data into our world-class numerical weather prediction models,” said Frank Marks, director of the Hurricane Research Division of NOAA’s Atlantic Oceanographic and Meteorological Laboratory. After all six satellites are launched and positioned in 2022, “this new constellation will provide high frequency temperature and humidity soundings as we seek to learn how hurricanes interact with the surrounding temperature and moisture environment—key data that could improve hurricane intensity forecasts.”

A critical step to preparing for the constellation is the launch of a pathfinder satellite, a seventh identical copy of the TROPICS smallsats, that will enable full testing of the technology, communication systems, data processing, and data flow to application users in advance of the constellation’s launch. This will allow time for adjustments to the ground system and data products, helping ensure the success of the TROPICS mission.

“The TROPICS Pathfinder satellite is similar to a screening before the opening night of a big show,” said Nicholas Zorn, the Pathfinder program manager from MIT Lincoln Laboratory. “Its mission is a real-world, end-to-end test, from environmental verification through integration, launch, ground communications, commissioning, calibration, operations, and science data processing. Any areas for improvement identified along the way can be reinforced before the constellation launches.”


The TROPICS Pathfinder satellite, pictured above, was launched on June 30. The satellite body measures approximately 10 cm X 10 cm X 36 cm and is identical to the six additional satellites that will be launched in the constellation in 2022. The golden cube at the top is the microwave radiometer, which measures the precipitation, temperature, and humidity inside tropical storms.
Credits: Blue Canyon Technologies

MIT Lincoln Laboratory’s William Blackwell is the TROPICS principal investigator. Six years ago, he submitted TROPICS as a proposal to NASA’s Earth Venture Instrument competition series and was awarded funding. The Earth Venture Instrument program calls for innovative, science-driven, cost-effective missions to solve pressing issues related to Earth science.

Aboard each TROPICS small satellite is an instrument called a microwave radiometer, which detects temperature, moisture, and rainfall in the atmosphere. On current weather satellites, microwave radiometers are about the size of a washing machine. On TROPICS’ small satellites the radiometers are about the size of a coffee mug.

Microwave radiometers work by detecting the thermal radiation naturally emitted by oxygen and water vapor in the air. The TROPICS instrument measures these emissions via an antenna spinning at one end of the satellite. The antenna listens in at 12 microwave channels between 90 to 205 gigahertz, where the relevant emission signals are strongest. These channels capture signals at different heights throughout the lowest layer of the atmosphere, or troposphere, where most weather we experience occurs.

By flying the TROPICS radiometers at lower altitude and detecting fewer channels than their larger counterparts, in the channels they do carry, the radiometers deliver comparable performance.

Miniaturizing the microwave radiometer has been an incremental process over the last 10 years for Blackwell and his team, spurred by the invention of CubeSats, satellites the size of a loaf of bread that are often economical to launch. TROPICS builds on Blackwell and his team’s 2018 success in launching the first microwave radiometer on a CubeSat to collect atmospheric profiling data. The instrument aboard the TROPICS’ six satellites has been upgraded to provide improved sensitivity, resolution and reliability and will make more targeted and rapid weather observations.

“These storms affect a lot of people, and we expect that with the increased observations over a single storm from TROPICS, we will be able to improve forecasts, which translates to helping people get to safety sooner, protect property, and overall enhance the national economy,” Blackwell says, looking ahead to the full constellation launch next year. “It is amazing technology that we have proven out that allows us to maximize the science from the instrument’s size factor. To pull this off has taken contributions of so many people.”

The TROPICS science team includes researchers from MIT Lincoln Laboratory and MIT Department of Aeronautics and Astronautics; NASA’s Goddard Space Flight Center; NOAA Atlantic Oceanographic and Meteorological Laboratory; NOAA National Hurricane Center; NOAA National Environmental Satellite, Data, and Information Service; University of Miami; Colorado State University; Vanderbilt University; and University of Wisconsin. The University of Massachusetts Amherst, Texas A&M University and Tufts University contributed to the technology development. Maverick Space Systems provided integration services for the Pathfinder, which was launched from SpaceX’s Transporter 2 mission. Astra Space Inc. is providing launch services for the constellation. NASA’s Launch Services Program based at Kennedy Space Center procured and is managing the Tropics Pathfinder launch service.

By Kylie Foy
Massachusetts Institute of Technology, Lincoln Laboratory

NASA Media Contact: Ellen Gray, Earth Science News Team

Original Article

Continue Reading

ACTIVATE

Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE)

https://activate.larc.nasa.gov/

Riding the marine layer skies looking for aerosol particles – to predict future climate change.

Simulate climate and predict change as it happens!

NASA’s ACTIVATE mission is on the hunt for clouds off the coast over the western Atlantic Ocean! It is looking for answers to help us understand how clouds and aerosols (particles in the air) affect light and heat from the sun. The size and number of cloud droplets within a cloud determines things like how long the cloud lasts, how well it traps heat at the earth’s surface, or how well it reflects sunlight. All of these can have a significant impact on the earth’s climate. One of the largest unknowns in climate change is how the interaction between clouds and aerosols impacts the climate and understanding this is critical towards improving predictions of how future climate will be impacted by human emissions.

“Climate change is one of the most pressing issues we are facing on this planet; it is important for all regions of the world. I have spent my research career studying aerosol particles and the extension to how these particles interact with clouds has opened up a whole new avenue of greater challenges that entices me. The research involves using airborne platforms, which has always been of interest to me as I have always been drawn to airplanes.” – Armin Sorooshian, Principal Investigator

NASA’s ACTIVATE investigation is a five-year project studying how clouds and aerosols interact. Aerosols are very tiny particles that are suspended in the atmosphere and are often the “seed that cloud droplets form around. ACTIVATE focuses on marine boundary layer (MBL) clouds off of the east coast of North America. This region sees a large source of aerosols transported from the US eastern seaboard, making it an ideal area to study these interactions. ACTIVATE is aiming to collect a dataset on aerosol and cloud interactions of unprecedented size and statistics. What’s unique about this investigation? NASA Langley’s King Air and the HU-25A Falcon aircraft are flying together in coordinated patterns to simultaneously gather data from well above the clouds and from directly within the vicinity of the cloud deck itself. These data for both aerosols and clouds will give scientists better understanding as to how these mediums interact and affect our climate.

Related Projects

CALIPSO

NAAMESlogo

NAAMES

ORACLES

ORACLES

NASA’s ACTIVATE mission is on the hunt for clouds off the coast over the western Atlantic Ocean! It is looking for answers to help us understand how clouds and aerosols (particles in the air) affect light and heat from the sun.

 

CALIPSO

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)

 
 

https://www-calipso.larc.nasa.gov/
https://www.nasa.gov/mission_pages/calipso/main/index.html

The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols play in regulating Earth’s weather, climate, and air quality.

CALIPSO combines an active lidar instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols over the globe. CALIPSO was launched on April 28, 2006, with the CloudSat satellite.

CALIPSO and CloudSat are highly complementary and together provide new, never-before-seen 3D perspectives of how clouds and aerosols form, evolve, and affect weather and climate. CALIPSO and CloudSat fly in formation with three other satellites in the A-train constellation to enable an even greater understanding of our climate system.

The CALIPSO satellite provides new insight into the role that clouds and atmospheric aerosols play in regulating Earth’s weather, climate, and air quality.

CloudSat

CloudSat2 

CloudSat

https://cloudsat.atmos.colostate.edu/home

https://cloudsat.atmos.colostate.edu/data

 

CloudSat is one of NASA’s weather and climate-tracking satellites, and from its name, it’s apparent what it measures – clouds!! Clouds have an enormous influence on Earth’s weather, climate and energy balance, and CloudSat has been helping scientists learn about clouds since it was launched on a Delta II rocket in 2006. From providing a view from space as we watch an approaching hurricane to providing details about how clouds impact radiation from the sun and the climate, CloudSat has been understanding the impact of clouds for nearly 15 years.

The cloud radar on CloudSat is 1000 times more sensitive than most weather radars on the ground. With its long history sending us data about clouds, CloudSat has contributed so much valuable information! CloudSat provides a never-before-seen perspective on clouds; its radar allows us to see inside the large cloud masses that make our weather. This helps us understand processes such as those that convert the tiny cloud particles to precipitation. Key discoveries from CloudSat have included how often the clouds above Earth rain and snow, how much ice and water are in clouds, and how clouds heat or cool the atmosphere. Cloudsat measurements have shown how pollution, volcanic ash, and other aerosols can interact with clouds and affect both precipitation and how efficiently clouds reflect sunlight, which has a huge impact on climate. The cloud and precipitation measurements from CloudSat have been used to track the intensity and patterns of tropical cyclones as they become hurricanes. All of these critical observations will ultimately help us predict the effects of clouds on our climate and improve our predictions of climate change.

NASA launched the CloudSat and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) spacecraft to study the role that clouds and aerosols play in regulating Earth’s weather, climate and air quality.

 

CYGNSS

Cyclone Global Navigation Satellite System (CYGNSS)

A new constellation in space is telling us how hurricanes and floods are threatening us on Earth

https://www.nasa.gov/cygnss

  On December 15, 2016, an aircraft called “Stargazer” took off from Cape Canaveral, Florida and flew a hundred miles or so off the coast. During flight, a rocket was launched from the aircraft carrying eight NASA micro-satellites into space called Cyclone Global Navigation Satellite System (CYGNSS). The CYGNSS microsatellites are currently orbiting the tropics about 315 miles up. CYGNSS is used to measure winds in tropical storms and hurricanes. Since it can “see” the winds inside the storms and at the surface of the ocean, CYGNSS is able to improve predictions of how strong hurricanes will get and where they will make landfall. Not only is CYGNSS looking at the ocean, it is also studying moisture levels in the land. These soil moisture measurements can improve predictions of soil saturation, rain runoff and flooding. This data helps keep people who live in coastal areas safe from hurricane disasters and helps them plan better communities to combat future storms.

“It is very gratifying to see the potential CYGNSS has to make useful, practical contributions to people’s everyday lives by improving forecasts of storms and floods.” – Chris Ruf, PI, CYGNSS

The technology on each of the CYGNSS microsatellites is something familiar – a GPS! When CYGNSS sends GPS radio signals to the earth and they are bounced off of ocean waves, the signal that is reflected back to the satellite tells us what the winds are like right at the ocean surface. Since it was launched in 2016, scientists have been learning how to use CYGNSS data in many other ways too. It is able to show us flooded areas on land – during Hurricane Harvey, CYGNSS was used to identify the spread of the flooding over the Houston area. This helps “first responders” know which areas need urgent help during flooding disasters. Recently, CYGNSS has been used to help locate areas of a major locust outbreak in East Africa. CYGNSS satellites may be micro-sized, but they have a huge role in helping us better understand hurricanes, flooding, and locusts.

The Cyclone Global Navigation Satellite System (CYGNSS) will probe the inner core of hurricanes to learn about their rapid intensification.

DCOTSS

Dynamics and Chemistry of the Summer Stratosphere (DCOTSS)

https://dcotss.org/

DCOTSS Outreach

During the summer, strong convective storms over North America overshoot the tropopause into the lower stratosphere. These storms carry water and pollutants from the troposphere into the normally very dry stratosphere, where they can have a significant impact on radiative and chemical processes, potentially including stratospheric ozone. The photo below, taken from the International Space Station, shows one of these storms with an anvil, which is typically near the tropopause level; an overshooting top; and a plume of cirrus (ice) clouds injected into the stratosphere by the overshooting top. Overshooting tops can reach many kilometers above the tropopause into the stratosphere.
During the summer, strong convective storms over North America overshoot the tropopause into the lower stratosphere. These storms carry water and pollutants from the troposphere into the normally very dry stratosphere, where they can have a significant impact on radiative and chemical processes, potentially including stratospheric ozone.
[/fourcol_six]

Delta-X

Delta-X

Delta-X – Forecasting the fate of the Mississippi River Delta

Mississippi Delta is in peril with the livelihood of millions in jeopardy
“Good Lord’s willing, and the creek don’t rise.” Johnny Cash

Simulate climate and predict change as it happens!

Deltas everywhere provide many benefits to life on earth – like serving as a natural protection for our cities and towns against storm surges and tsunamis, or being wetland habitats for crustaceans, mammals, and birds. Many deltas are home to large cities, and people depend on the wetlands for their livelihoods. Deltas around the world, however, are in peril! They’re drowning due to sea level rise and lack of sediment deposited by rivers; it is expected that nearly all of the world’s major river deltas are at risk of drowning this century. The natural influx of sediments from upstream would naturally build up the deltas and provide resilience to sea level rise, however, river channels delivering the sediments have been disrupted by human activities.

“We hope Delta-X calibrated hydrodynamic models will support other agencies and stakeholders in planning coastal
restoration projects and managing resources in the Mississippi River Delta.” – Marc Simard, Delta-X Principal Investigator

NASA’s Delta-X project seeks to understand how parts of the Mississippi River Delta (MRD) are growing and others are sinking. Due to a combination of factors (sea level rise; the disruption of sedimentation; a general sinking of the land due to natural compaction, underground extraction of oil, gas, and water), the Louisiana coastline has been losing land at the rate of almost one football field every hour during the last few decades! Delta-X scientists will collect data over the Atchafalaya and Terrebonne basins during two deployments in 2021 using state of the art remote sensing instruments onboard three aircraft and using in-situ (direct) instruments deployed across the basins. The Delta-X scientists will use this data to learn how and where the MRD is gaining and losing land. The data will be used to improve and calibrate models that predict how the MRD will respond to continuing sea level rise over the next century and to identify which areas are the most vulnerable to sea level rise and storms.

https://www.youtube.com/watch?v=I0oAkijxj-E#action=share
https://www.jpl.nasa.gov/news/news.php?feature=7601
https://www.youtube.com/watch?v=beeD3GRTkpQ

Deltas everywhere provide many benefits to life on earth – like serving as a natural protection for our cities and towns against storm surges and tsunamis, or being wetland habitats for crustaceans, mammals, and birds.

 
 

ECOSTRESS

ECOSTRESS

ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS)

 
 

https://www.nasa.gov/mission_pages/ecostress
https://ecostress.jpl.nasa.gov/

NASA launched the CloudSat and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) spacecraft to study the role that clouds and aerosols play in regulating Earth’s weather, climate and air quality. Launch occurred on April 28, 2006, from Vandenberg Air Force Base, Calif., aboard a Boeing Delta II launch vehicle. The satellites launched into a 705-kilometer (438-mile) circular sun-synchronous polar orbit, and fly in orbital formation as part of the “A-Train” constellation of three other Earth Observing satellites including Aqua, Aura and Centre National d’Etudes Spatiales’ (CNES) PARASOL. Together, the A-Train satellites are increasing our understanding of the climate system and the potential for climate change. The CloudSat mission funded lifetime is 22 months to enable more than one seasonal cycle to be observed, although the radar lifetime is expected to approach three years. CALIPSO is planned for three years of on-orbit operation.
Scientists are improving their understanding of Earth’s climate system, but many questions remain. Weather and climate models, the prediction tools scientists use to study the Earth system, are complicated, and the information scientists use to build the models is incomplete. CloudSat and CALIPSO ARE COLLECTING information about the vertical structure of clouds and aerosols unavailable from other Earth observing satellites. Their data ARE IMPROVING our models and providING a better understanding of the human impact on the atmosphere. Policy makers and business leaders CAN make more informed long-term environmental decisions about public health, the economy and better day-to-day weather predictions as a result of these missions.

NASA launched the CloudSat and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) spacecraft to study the role that clouds and aerosols play in regulating Earth’s weather, climate and air quality.

 
 

[fourcol_six]

EMIT

EMIT logo

EMIT (Earth Surface Mineral Dust Source Investigation)

EMIT Project Website

Discovering what mineral dust is made of and if it cools or warms our atmosphere

What is in the mineral dust that that can travel from Africa to Texas and why do people care so much?

In June 2020 mineral dust blew from the surface of Africa and arrived in the southern United States impacting states from Florida to Texas. It created visibility hazards for people and had other impacts to our environment. Clearly, our world is interconnected by air, land, and water, but what is the journey of the dust and how does it impact us? The NASA Earth Surface Mineral Dust Source Investigation (EMIT) is studying the composition of the Earth’s mineral dust regions and how it impacts our planet and people (radiative forcing, atmospheric chemistry, cryosphere melt, ocean biogeochemistry, fertilization of terrestrial ecosystems, as well as hazards and toxicity to human populations). By measuring the source regions and using sophisticated models, EMIT will assess current mineral dust heating and cooling impacts to the Earth and predict potential future changes, enabling scientists to better understand the role of mineral dust in the Earth System that we all live within.

“The time for EMIT is now. Minerals dust has impacts throughout the Earth System. Only now is the advanced NASA technology available for the EMIT instrumentation. Only now are the modern Earth System Models ready for EMIT type initialization. With EMIT we can better understand how mineral dust heats and cools our planet and make decisions regarding how to accommodate and/or mitigate these impacts.” – Robert O. Green, Principal Investigator, EMIT

Mineral dust blown into the atmosphere has many effects on the Earth System including heating and cooling. These first-of-their-kind EMIT measurements will help us understand and make decisions regarding these impacts. How? The EMIT imaging spectrometer instrument is the next generation based on NASA’s Moon Mineralogy Mapper that mapped minerals and discovered water on the illuminated surface of the Moon. EMIT’s instrument will be mounted to the exterior of the International Space Station to measure the composition of mineral dust source regions around the world. EMIT’s state-of-the-art imaging spectrometer measures the different wavelengths of light reflected by minerals on the surface of deserts and other dust sources. The EMIT science team uses these mineral spectroscopic “fingerprints” in conjunction with advanced Earth System models to achieve its objectives. By measuring in detail which minerals make up the dust, EMIT is helping answer the essential question – to what extent does this type ofaerosol warm or cool the atmosphere?. This helps us to better understand what’s happening to our atmosphere now and predict how things may change in the future. The output of EMIT has both economic and public benefit for you (e.g. natural resources and hazard mitigation). You will be able to access the EMIT measurements and products at NASA’s Land Processes Distributed Active Archive Center.

The Earth Surface Mineral Dust Source Investigation (EMIT) is an Earth Ventures-Instrument (EVI-4) Mission to map the surface mineralogy of arid dust source regions via imaging spectroscopy in the visible and short-wave infrared (VSWIR).

 

GEDI

GEDI

Global Ecosystem Dynamics Investigation (GEDI)

Data from NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission are adding to our understanding of carbon cycling and the structure and development of global biomes.

From red angelim trees in the Amazon towering hundreds of feet above the ground to clusters of shrubs hugging the surface, terrestrial biomes develop in height and density as well as in length and width. Data depicting this three-dimensional structure, however, are limited. This gap is being filled with several recently-launched Earth observing missions. The first data from one of these missions—NASA’s Global Ecosystem Dynamics Investigation (GEDI)—are now publicly available through NASA’s Land Processes Distributed Active Archive Center (LP DAAC).

Launched on December 5, 2018, and installed on the International Space Station’s Japanese Experiment Module-Exposed Facility (JEM-EF), GEDI is led by a science team at the University of Maryland in collaboration with NASA’s Goddard Space Flight Center in Greenbelt, Maryland. As noted on the GEDI mission website, data are initially transferred to the GEDI Mission Operations Center (MOC) and then processed through the Science Operations Center (SOC), both of which are located at Goddard. Its primary two-year mission is to produce high-resolution laser ranging observations of Earth in order to characterize the effects of climate change and land use on ecosystem structure and dynamics.

Data from NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission are adding to our understanding of carbon cycling and the structure and development of global biomes.

 
 

Powered by WordPress. Designed by WooThemes